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Abstract— The diagnosis of early stages of Alzheimer’s dis-
ease (AD) is essential for timely treatment to slow further
deterioration. Visualizing the morphological features for early
stages of AD is of great clinical value. In this work, a novel multi-
directional perception generative adversarial network (MP-GAN)
is proposed to visualize the morphological features indicating
the severity of AD for patients of different stages. Specifically,
by introducing a novel multidirectional mapping mechanism into
the model, the proposed MP-GAN can capture the salient global
features efficiently. Thus, using the class discriminative map from
the generator, the proposed model can clearly delineate the subtle
lesions via MR image transformations between the source domain
and the predefined target domain. Besides, by integrating the
adversarial loss, classification loss, cycle consistency loss, and
L1 penalty, a single generator in MP-GAN can learn the class
discriminative maps for multiple classes. Extensive experimental
results on Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset demonstrate that MP-GAN achieves superior perfor-
mance compared with the existing methods. The lesions visualized
by MP-GAN are also consistent with what clinicians observe.

Index Terms— Alzheimer’s disease (AD), generative
adversarial networks (GANs), lesion visualization, magnetic
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I. INTRODUCTION

ALZHEIMER’S disease (AD) is an irreversible and
chronic neurodegenerative disease with progressive

impairment of memory and other mental functions. It is
estimated to be the fifth leading cause of death in elderly
people [1]. AD is caused by abnormal cell death in the
brain, long before amnestic symptoms are observable [2].
The resulting brain atrophy is visible in structural magnetic
resonance (MR) images. To date, AD is incurable but pre-
ventable. It is crucial to diagnose the early stages of AD by
MR images for timely treatment [3]–[5]. Significant mem-
ory concern (SMC) and mild cognitive impairment (MCI)
are the transitional stages between normal controls (NCs)
and AD [6]. SMC and MCI present mild symptoms, and
the disease-related regions are very subtle in MR images.
Currently, the clinical diagnosis procedure is time-consuming
and requires extensive clinical training and experience for
clinicians. Thus, developing automatic methods using deep
learning to visualize the brain changes for the early stages of
AD is highly desirable. It can assist clinicians in AD analysis
and may provide meaningful information on the pathogenesis
of cognitive decline. However, this is a challenging task due
to several reasons, such as low-intensity contrast between the
lesion and other neighboring regions, indistinct boundary of
the lesion, and irregular lesion shape.

To visualize features of different Alzheimer’s stages in MR
images, there already exist several feature visualization meth-
ods based on classification. These methods can be classified
into two categories as follows.

1) The region of interest (ROI)-based classification
approaches [1], [7]–[9] and patch-based classification
approaches [10]. The performance of these methods is
limited since the brain ROIs or patches need to be
selected based on anatomical brain atlases or biological
prior knowledge beforehand. Multiple steps are required
to exact features from ROIs or patches for classification
and subsequent visualization. Therefore, they tend to be
sensitive to parameters and time-consuming.

2) Three strategies to visualize features for a convolutional
neural network (CNN) classifier: a) by editing an input
image and observing its effect on the prediction results,
the occluded regions that have a significant impact
on prediction can be visualized; b) by analyzing the
gradients of the prediction for an input image, a heatmap
can be produced for visualization; and c) by analyzing
the activations of the feature maps for the image, the
regions that are responsible for making the specific
prediction can be visualized.
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Fig. 1. Pipeline of the MP-GAN model. Assuming the MP-GAN is well-trained, given the real EMCI patient’s MR images and NC label, the subtle
morphological features between NC and EMCI can be visualized by the model to assist clinicians in AD analysis and treatment.

These classification-based feature visualization methods make
their predictions based on local regions most relevant to
particular prediction rather than the whole image, and it may
ignore features with low discriminative power if stronger
features for the prediction are available. As a result, if there is
evidence for a category at multiple locations in the image (such
as multiple AD lesions in MR images), some lesions with
low discriminative power may be ignored. Moreover, visual
features strongly depend on the performance of the classifier,
and a large number of labeled samples are required to train a
robust model.

To alleviate these issues, a novel multidirectional perception
generative adversarial network (MP-GAN) is proposed to visu-
alize morphological features for whole-brain MR images as
shown in Fig. 1. GAN [11], [12] has attracted lots of attention
as it is capable of generating realistic data without explicitly
modeling the probability density function. Specifically, the
generator of MP-GAN takes both MR images and its target
domain as input. Then it flexibly learns a class discriminative
map for the target domain. By adding the class discrimina-
tive map and the input MR image of the source domain,
a synthetic MR image of the target domain can be produced.
Thus, the learned class discriminative map can capture all the
brain changes by transforming the MR image between the
source domain and the target domain. By visualizing class
discriminative maps, the subtle and complex lesions that may
not be found within one region can be identified. Besides,
by designing the hybrid loss, a single generator in MP-GAN
can learn the class discriminative maps for multiple classes.
In this manner, the common features unrelated to the specific
domain can be reused during training, and therefore the
visualization performance is further improved. With this global
lesion visualization, clinicians can better exclude undesirable
biases and potentially even identify previously unknown char-
acteristics of AD. To the best of our knowledge, the proposed
MP-GAN is the first work to visualize the morphological
features for different Alzheimer’s stages by a single generator.
The contributions of this article are summarized as follows.

1) A novel MP-GAN with a multidirectional mapping
mechanism is proposed to capture the salient global
features efficiently. Using the class discriminative map
from the generator, the proposed model can clearly
delineate the subtle lesions via MR image transforma-
tions between the source domain and the target domain.

2) By integrating the adversarial loss, classification loss,
cycle consistency loss, and L1 penalty, a single generator
in MP-GAN can learn the class discriminative maps for
multiple classes. The morphological features indicating
different Alzheimer’s stages can be visualized by a
single MP-GAN model.

The rest of this article is organized as follows. The related
work is reviewed in Section II. The proposed MP-GAN is
described in detail in Section III. In Section IV, MP-GAN is
tested and compared with the existing feature visualization
methods to demonstrate its advantage. Finally, concluding
remarks and future work are discussed in Sections V and VI.

II. RELATED WORK

A. Generative Adversarial Networks

GAN has attracted lots of attention as it is capable of gener-
ating realistic data without explicitly modeling the probability
density function. It has shown remarkable results in various
computer vision tasks such as image generation [11], image-
to-image translation [13], image super-resolution [12], and
semisupervised learning [14], [15]. A typical GAN model
consists of two modules: a discriminator and a generator.
The discriminator learns to distinguish between real and fake
samples, while the generator learns to generate fake samples
that are indistinguishable from real samples. Training the
original GAN, however, suffers from several problems such
as low quality of generated images, convergence problems,
and mode collapse. To address these deficiencies, variants of
the GAN were introduced [16], [17]. The most representative
work is Wasserstein GAN (WGAN) [16]. It leverages the
Wasserstein distance to measure the distance between two
data distribution that has better theoretical properties than the
original Kullback–Leibler (KL) divergence.

B. Feature Visualization Methods

The current feature visualization methods for AD gen-
erally fall into two categories: 1) the ROI-based classi-
fication approaches and 2) the CNN-based classification
approaches.

For the first category, the brain ROIs or patches were
selected based on anatomical brain atlases or biological prior
knowledge beforehand, and then multiple steps were required
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Fig. 2. Flowchart of MP-GAN. It consists of three components: a generator, a classifier, and a discriminator. The generator maps the input source MR image
to the synthetic target MR images by the class discriminative map. The synthetic source MR images are reconstructed from the synthetic target MR images
by the generator in the same manner. Using classification loss, adversarial loss, and cycle consistency loss, the generator learns to generate synthetic target
MR images and the reconstructed source MR images that are indistinguishable from real MR images.

to extract features from ROIs or patches for classification.
According to classification performance, the most frequently
selected ROIs or patches would be visualized [7], [8].
For instance, Lian et al. [10] proposed a hierarchical fully
convolutional network (H-FCN) to automatically identify
discriminative local patches and regions in MR images for
AD analysis. The hierarchical discriminative locations of
brain atrophy at both the patch level and region level were
visualized.

For the second category, there were three strategies to
visualize features for CNN.

1) By editing an input image and observing its effect
on prediction results, the occluded regions that had a
significant impact on prediction can be visualized [18].
For instance, Zeiler and Fergus [19] proposed an
occlusion-based method to visualize the activity within
CNN. Different portions of the input image were
occluded with a gray square, and the output of the clas-
sifier was observed. The occluded regions that cause the
probability of the correct class drop significantly would
be visualized. Korolev et al. [20] used 3-D-ResNet for
AD classification, and the important regions of the MR
image most affected by AD were visualized by the
occlusion-based method [19].

2) By analyzing the gradients of the prediction
for an input image, the heatmap can be
produced for visualization [21]–[26]. For example,
Springenberg et al. [27] proposed a new variant of
the “deconvolution approach” guided backpropagation
for visualizing features learned by CNNs. Guided
backpropagation can be applied to a broader range of
network structures. Sundararajan et al. [28] proposed
integrated gradients using an axiomatic framework for
feature visualization.

3) By analyzing the activations of feature maps for
the image, the regions that were responsible for
making specific prediction can be visualized. For
instance, Zhou et al. [29] proposed class activation
mapping (CAM) to visualize the discriminative object
parts detected by CNN in a single forward pass.
Khan et al. [30] used VGG with transfer learning for
AD analysis. CAM was used to visualize the dis-
criminative regions in the MR image for model inter-
pretation. Lian et al. [31] proposed a multitask weakly
supervised attention network (MWAN) by leveraging a
fully trainable dementia attention block for regression.
The attention maps were visualized by CAM for AD
subjects. Sarraf and Tofighi [32] used LeNet-5 to classify
structural MR images for AD versus NC. The filters and
features were visualized for interpretation.

III. PROPOSED MP-GAN

A. Overview

This article proposes a novel mapping mechanism by which
MR images can be mapped between each pair of source
class and target class in a multidirectional manner. Take
the source class NC as an example, the generator can map
the MR images between NC and SMC; meanwhile, it can
also map MR images between NC and the other class such
as EMCI, LMCI, and AD simultaneously. The flowchart of
MP-GAN is shown in Fig. 2. After data preprocessing (see
Section IV-A), the normalized T1-MR images of all the classes
are fed into MP-GAN. The proposed model learns the class
discriminative maps between all class pairs for visualizing
morphological features. More specifically, the generator aims
to capture salient global features in class discriminative maps.
Then the class discriminative maps are used to transform MR
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images between the source domain and the target domain.
To control semantic information, an auxiliary classifier is
introduced based on the generator and the discriminator to
form the MP-GAN architecture. While the generator produces
class discriminative maps distinguishing between the source
domain and the target domain, the classifier predicts the
domain indicating Alzheimer’s stage, and the discriminator
identifies whether the transformed MR images are real or
fake. In this manner, the class discriminative maps learned
by MP-GAN can highlight exactly which regions of the MR
image are significant for discrimination between the source
domain and the target domain at the voxel level. The subtle
and complex lesions that may not be found within one region
can be identified. Furthermore, since the input MR images
are high-order with complicated brain structure, MP-GAN is
further designed with the following two improvements: 1) 3-D
residual blocks are exploited in the conditional generator so
that features from low level can be reused, and the vanishing
gradient problem can be prevented and 2) 3-D-DenseNet is
used in the classifier to capture more discriminative features.

B. Architecture

The proposed MP-GAN is designed to visualize morpholog-
ical features for multiple classes. To achieve this, the generator
G is designed to produce class discriminative map �x which
can transform an input MR image x to an output MR image x �
conditioned on the target class y �, [G(x, y �)+x] → x �. During
training, the target class y � is randomly selected so that G
learns to produce class discriminative maps for all class pairs.
By doing so, the target class y � can be predefined, and global
features that distinguish between the source domain y and the
desired target domain y � can be visualized at the testing stage.

As illustrated in Fig. 2, the input MR image x is labeled
and y represents the corresponding class. The conditional
generator aims to capture all the salient global features in
class discriminative maps �x . Then �x is used to transform
the input MR image from the source domain y to the target
domain y � in a bidirectional manner. The classifier predicts
label yc given real MR image x by the conditional distribution
pc(y|x), and the discriminator is trained to identify whether
the MR image is real or fake. Formally, given an MR image x
of source class y and a conditional variable y �, the generator
can produce a synthetic MR image x � of target class y � by
adding the generated class discriminative map �x and input
MR image x

x � = �x + x = G
(
x, y �) + x (1)

which is indistinguishable from the real MR image of the tar-
get domain y �. Thereby, class discriminative map �x contains
all the salient global features that distinguish between two
domains y and y �. The change in salient voxels between the
source domain y and the target domain y � on the MR image
can be visualized by the class discriminative map.

1) Adversarial Loss: To make the synthetic target MR
images indistinguishable from real MR images, an adversarial
loss is defined as

Ladv = Ex
[
log D(x)

] + Ex,y�
[
log

(
1−D(G

(
x, y �)+x)

)]
(2)

where generator G generates an MR image [G(x, y �) + x]
conditioned on both the input MR image x and the target
class y �, while discriminator D attempts to distinguish between
real and fake MR images. G tries to minimize this adversarial

loss, while D tries to maximize it. More specifically, when
the discriminator successfully identifies real and fake MR
images, it is rewarded and no change is needed to update
the parameters of the discriminator, whereas the generator is
penalized with large updates to parameters. Alternately, when
the generator fools the discriminator, it is rewarded, and no
change is needed to update the parameters of the generator, but
the discriminator is penalized and its component parameters
are updated.

2) Classification Loss: Given an input MR image x and a
target class y �, the goal of MP-GAN is to produce a class dis-
criminative map that can transform x into an output MR image
x �. x � aims to be classified as the target class y �. To achieve
this condition, an independent classifier is introduced and the
classification loss is imposed when optimizing generator G.
Specifically, the loss function is decomposed into two terms:
a classification loss of real images to optimize classifier C and
a classification loss of fake images to optimize generator G.
In detail, the former is defined as

Lr
cls = E(x,y)∼preal(x,y)

[− log pc(y|x)
]
. (3)

By minimizing this classification loss, classifier C learns to
classify a real MR image x to its corresponding class y. On the
other hand, the loss function for the classification of fake
images is defined as

L f
cls = E(x� ,y�)∼pg(x,y)

[− log pc
(
y �|x �)]. (4)

Generator G tries to minimize the loss L f
cls to produce class

discriminative maps for generating MR images x � that can be
classified as the target class y �.

3) Cycle Consistency Loss: By minimizing the adversarial
and classification losses, generator G is trained to generate MR
images that are realistic and classified as target class. However,
minimizing the losses [see (2) and (4)] does not guarantee that
the final transformed images preserve the content of input MR
images while changing only the disease-related regions of the
input. To alleviate this problem, a forward cycle consistency
loss and backward cycle consistency loss [13], [33] are applied
to the generator. They are defined as

Lcyc_tar = Ex,y� ,y
[∥∥x �

real −
(
G

(
x, y �) + x

)∥∥
1

]
(5)

Lcyc_org = Ex,y� ,y
[∥∥xreal −

(
G

(
x �, y

) + x �)∥∥
1

]

= Ex,y� ,y
[∥∥xreal−

(
G

(
(G(x, y �)+x), y

)+x �)∥∥
1

]
(6)

where generator G takes in the transformed MR image x �
and the source class y as input and tries to reconstruct the
MR image Xr = G

(
x �, y

) + x � of the source domain y. The
L1 norm is adopted as the reconstruction loss. Note that a
single generator is reused twice. The generator is first used
to transform MR images from the source domain y to MR
images of the target domain y �. Then it is used to reconstruct
the MR image of the source domain y from the synthetic MR
images of the target domain y �. For the first utilization, forward
cycle consistency loss Lcyc−tar is adopted. For the second one,
backward cycle consistency loss Lcyc−org is adopted.

4) L1 Penalty: The smallest class discriminative map �x
that leads to a real MR image of the target domain y � is
encouraged. Thus, L1 penalty is defined as

L1(�x) = ��x�1 (7)

where �·�1 is the L1 norm.
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Fig. 3. Network architecture of the proposed MP-GAN. It consists of three components. (a) generator, (b) classifier, and (c) discriminator. The generator
consists of two convolutional layers for downsampling, three 3-D-residual blocks, and two transposed convolutional layers for upsampling. 3-D-DenseNet
is used in the classifier. A standard CNN architecture with seven convolutional layers with 4 × 4 × 4 and 1 × 1 × 1 convolutional filters is adopted in the
discriminator.

5) Total Loss: The total loss functions to optimize D, C,
and G are defined, respectively, as

LD = −Ladv (8)

LC = Lr
cls (9)

LG = Ladv + λclsL f
cls + λ1L1(�x)

+ λcyc_orgLcyc_org + λcyc_tarLcyc_tar (10)

where λcls, λ1, λcyc_org, and λcyc_tar are the hyperparameters
that control the relative importance of classification loss, L1
penalty, and cycle consistency loss, respectively, compared
with the adversarial loss. λcls is set as 0.1, λ1 is set as 10,
λcyc_org is set as 10, and λcyc_tar is set as 1 empirically through-
out this article. Note that each loss term is indispensable for
the proposed MP-GAN. Without any loss term of the hybrid
loss, the training of MP-GAN will become extremely unstable
and the learned class discriminative maps cannot capture the
salient features for each pair of classes.

During the training process, the following domain settings
are defined to train so that all the features between any two
domains y and y � can be visualized for AD analysis.

(1) y = {NC}, y � = {SMC,EMCI,LMCI,AD}.
(2) y = {SMC}, y � = {NC,EMCI,LMCI,AD}.
(3) y = {EMCI}, y � = {SMC,NC,LMCI,AD}.
(4) y = {LMCI}, y � = {SMC,EMCI,NC,AD}.
(5) y = {AD}, y � = {SMC,EMCI,LMCI,NC}.

From the algorithm perspective, take the first case (1) as an
example, when source domain y is set as NC and the target
domain y � will be set as one of {SMC, EMCI, LMCI, and

AD}. Note that all the categories in {SMC, EMCI, LMCI,
and AD} set will be trained at least once. In this way, all the
above five conditions will be trained for MP-GAN, and thus a
single generator in MP-GAN can learn the class discriminative
maps for each pair of classes, and the salient global features
can be captured for multiple classes. At the testing stage, y � is
predefined according to the requirement of user. In this article,
at the testing stage, the morphological features of NC versus
all Alzheimer’s stages including SMC, EMCI, and LMCI
are visualized. MCI is characterized by a slight decline in
cognitive abilities. Note that patients with MCI are at increased
risk of developing AD, but do not always do. Thus, MCI is
significant for morphological feature visualization and further
AD analysis.

The network structure of the generator, classifier, and dis-
criminator is shown, respectively, in Fig. 3. The network
used in the generator is ResNet. 3-D-ResNet is expanded
by adding a spatial dimension to all the convolutional and
pooling layers in ResNet for the MR image. Using the
shortcut connection, ResNet explicitly reformulates the layers
as learning residual functions regarding the input layer, and it
transfers feature representations from low layers to high layers.
More specifically, assume that the target class y � is a discrete
label, and it is encoded as a one-hot tensor. The target label
y � is concatenated to the input MRI tensor in a depth-wise
manner. Then they are operated by two convolutional layers
with a stride size of 2 for downsampling, three 3-D-residual
blocks [34], and two transposed convolutional layers with the
stride size of 2 for upsampling. In this manner, the target
label y � is operated with the input MRI tensor of the source
label y in each hidden layer of the generator, and the class
discriminative map �x between y and y � will be generated.
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TABLE I

DEMOGRAPHIC CHARACTERISTICS OF THE SUBJECTS IN ADNI DATASET

Finally, a synthetic MR image x � of target class y � is produced
by adding the generated class discriminative map �x and
input MRI tensor x. Instance normalization [35] is used in
all the layers except the last output layer for the generator.
3 × 3 × 3 and 1 × 1 × 1 convolutional filters are used in the
generator. The network used in the classifier is DenseNet [36].
3-D-DenseNet is expanded by adding a spatial dimension to all
the convolutional and pooling layers in DenseNet for the MR
image. Feature maps learned by all the preceding layers are
concatenating along the last dimension for subsequent layers.
Through such dense connectivity, feature maps are reused
and the vanishing gradient problem is alleviated. Meanwhile,
3-D-DenseNet can extract discriminative features related to
Alzheimer’s stage from the whole MR images efficiently. The
details of 3-D-denseNet can be found in [36] and [37]. In this
article, the depth is set to 30, the growth rate is set to 12, the
number of Dense-BC block is set to 3, and the reduction is set
to 0.5. A standard CNN architecture with seven convolutional
layers with 4×4×4 and 1×1×1 convolutional filters is adopted
in the discriminator. Each convolutional layer is followed by
batch normalization [38] and rectified linear unit (ReLU).

IV. EXPERIMENTS AND RESULTS

A. Dataset and Preprocessing

There are five stages associated with AD progression:
NC, SMC, early MCI (EMCI), late MCI (LMCI), and AD.
T1-weighted MR images from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) public dataset are used for
evaluation purpose. In all, 5316 MR images in ADNI-1,
ADNI-go, and ADNI-2 are used. It includes 1736 NC subjects,
288 SMC subjects, 1582 EMCI subjects, 616 LMCI subjects,
and 1094 AD subjects. Both 1.5- and 3-T field strength MR
images are used. Table I lists the demographic characteristics
of the subjects.

ADNI-go and ADNI-2 added 129 and 782 participants,
respectively, to the 819 recruited by ADNI-1.1 In ADNI-1,
NC and MCI participants continue to be followed by ADNI-go
and ADNI-2. Different from the ADNI-1 dataset, MCI is
divided into two subtypes, including EMCI, and LMCI in the
ADNI-2 dataset. ADNI-go also added a new cohort of people
with EMCI, and ADNI-2 added a cohort who were clinically
evaluated as cognitively normal but had SMC. Note that SMC
is the transitional stage between NC and MCI. The diagnostic
criteria are described in the ADNI procedures’ manual.2

All the MR images are in the neuroimaging informatics
technology initiative (NIfTI) format. They are processed using
standard operations in the FMRIB Software Library (FSL)3

toolbox [39]–[41] for registering the MR images to the

1http://adni.loni.usc.edu/about/
2http://www.adni-info.org
3www.fmrib.ox.ac.U.K./fsl

Montreal Neurological Institute (MNI) space. The preprocess-
ing pipelines contain three parts: 1) removal of redundant tis-
sues; 2) brain area extraction by BET; and 3) linear registration
by FLIRT [42], [43]. Finally, the T1-MR image is normalized
into the range [-1,1] and is fed into the MP-GAN model as a
tensor directly without compressing or downsizing.

B. Experiment Settings

The proposed MP-GAN is trained on the ADNI dataset from
scratch in an end-to-end manner. All the methods are imple-
mented in TensorFlow.4 All the experiments are conducted
on four NVIDIA GeForce GTX 2080 Ti GPUs. “Adam” is
used as the optimizer for stochastic gradient descent (SGD).
The batch size is set to 8 empirically as each MR image is
a high-order tensor of 109 × 91 × 91. Since the batch size is
relatively small, the gradients will become unstable, and thus
there is a need to reduce the learning rate to stabilize training.
According to the experimental results, the learning rate of both
the generator and the classifier is set to 0.001, and the learning
rate of the discriminator is set much smaller as 10−4. For
evaluation, 80% of the MR images are allocated for training.
The remaining 20% of the MR images are equally partitioned
and used as validation and test datasets, respectively. For
avoiding bias, the training set, validation set, and test set do
not have the MR images from the same subject simultaneously.
A single MP-GAN model is trained on a training dataset
of all the categories, and then the morphological features
between the source domain and the predefined target domain
are visualized on the test set. The validation dataset is used to
tune hyperparameters to obtain the best model out of several
epochs during the training process.

C. Qualitative Analysis
In this section, comprehensive experiments are conducted

to show the effectiveness of MP-GAN. First, the proposed
model is compared with four methods: 1) guided backpropa-
gation [27]; 2) integrated gradients [28]; 3) CAM [29]; and
4) GAN [44]. For guided backpropagation, integrated gra-
dients, and CAM, a conventional CNN architecture is used
for these networks. More specifically, the CNN architecture
consists of ten convolutional layers followed by batch normal-
ization and max-pooling layers. After the last convolutional
layer, an average pooling layer is used instead of the fully
connected layer. Besides, for the CAM method, the last layer
is designed as described in [29] and the last two max-pooling
layers are omitted. This allows for more accurate heatmaps due
to higher resolution of the last feature maps. The proposed
method is also compared with the conventional GAN [44]
to demonstrate our advantages. For a fair comparison, the
network structure of the generator and the discriminator in

4http://www.tensorflow.org/
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Fig. 4. Heatmaps predicted by integrated gradients, guided backprop, CAM, GAN, and our method are shown in sagittal, coronal, and axial views for NC
versus SMC, respectively.

Fig. 5. Heatmaps predicted by integrated gradients, guided backprop, CAM, GAN, and our method are shown in sagittal, coronal, and axial views for NC
versus EMCI, respectively.

GAN is the same as the proposed MP-GAN, and the loss
function of GAN is the conventional adversarial loss. The
GAN is trained to visualize important regions in MR images
between two predefined classes. Furthermore, the following
four evaluation groups are set up when compared with the four
existing methods: 1) NC versus SMC; 2) NC versus EMCI;
3) NC versus LMCI; and 4) NC versus AD. The main reason
for this setup is that more meaningful pathological features
can be found by comparing with healthy people. It is worth
noting that the MR images of all the five classes are trained
using only one MP-GAN model, and the class discriminative
map for each evaluation group is visualized at the test stage.
But for the four compared methods, one independent binary
model is trained for each evaluation group, respectively.

To visually show the quality of heatmaps produced by the
proposed model and the four existing methods, one MR image
is taken from each evaluation group for qualitative analysis.
From Figs. 4–7, the heatmaps from the sagittal, coronal,
and axial views are illustrated for each evaluation group,
respectively. Figs. 4–7 are shown by progression from SMC to
AD in order. From Figs. 4–7, it can be seen that the proposed
MP-GAN can visualize subtle lesions with contour edge at
a finer scale (i.e., voxel level). More detailed discriminative

regions can be depicted, such as the hippocampus, and the
corners and boundaries of the ventricle. The highlighted subtle
lesions predicted by MP-GAN are relatively more precise than
those generated by the other four methods. For example, from
Fig. 5, it can be observed that the lesions that have much
more blurred boundary and are difficult to recognize can be
delineated by MP-GAN. More specifically, the corpus callo-
sum with irregular sulcus is depicted accurately by MP-GAN
from the sagittal view and coronal view in Fig. 5. Atrophy of
the corpus callosum may lead to functional disability because
of reduced interhemispheric integration. It is a region that
has been examined intensively for indications of EMCI [45].
On the other hand, integrated gradients and guided backprop
tend to focus on some small parts of the lesions rather than
the whole lesions. Because some subtle voxels of the lesion
might be more salient than the other voxels of the whole
lesion. This proves that the feature visualization methods
based on classification only focus on the most discriminative
features and ignore the rest. It is difficult to interpret the
results produced by CAM due to low resolution. Moreover,
the regions visualized by GAN seem to cover parts of ground
truth affected by the AD for NC versus AD as shown in
Fig. 7. However, they are not close to ground truth, and this
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Fig. 6. Heatmaps predicted by integrated gradients, guided backprop, CAM, GAN, and our method are shown in sagittal, coronal, and axial views for NC
versus LMCI, respectively.

Fig. 7. Heatmaps predicted by integrated gradients, guided backprop, CAM, GAN, and our method are shown in sagittal, coronal, and axial views for NC
versus AD, respectively.

is because the training of GAN is unstable. In summary, the
results of the proposed MP-GAN are closer to the ground truth
compared with the other four existing methods. This implies
that MP-GAN can benefit from the multidirectional mapping
mechanism and the hybrid loss function. MP-GAN is more
sensitive to subtle structural changes in MR images caused by
cognitive decline.

The ADNI diagnostic criteria for each Alzheimer’s stage
are briefly described as follows.

1) NC participants have no subjective or informant-based
complaints of memory decline, and they have a normal
cognitive performance.

2) SMC participants have subjective memory concerns
assessed by cognitive change index (CCI). They have
no informant-based complaint of memory impair-
ment or decline, and they have a normal cogni-
tive performance on Wechsler logical memory delayed
recall (LM-delayed) and mini-mental state examination
(MMSE) [46].

3) EMCI participants have a subtle cognitive decline.
Their abnormal memory function is approximately

1 standard deviation below normative performance, and
their MMSE total score is greater than 24.

4) LMCI participants have a memory concern. Clinical
dementia rating (CDR) of LMCI participants is 0.5, and
memory box (MB) score must be at least 0.5.

5) AD participants have an SMC. The MMSE score of AD
participants is between 20 and 26, and CDR is 0.5 or 1.0.

To further analyze the visualization results of the proposed
MP-GAN from a clinical perspective, the two-view slices
in another coordinate of (33,55,39) are shown in Fig. 8.
Note that the three-view slices shown from Figs. 4–7 are
in the coordinate of (44,55,47). From Fig. 8, the following
observations can be made.

1) For all the four evaluation groups, the proposed
MP-GAN can delineate the discriminative lesions
clearly. More specifically, lesions visualized by
MP-GAN are hippocampus, thalamus, putamen,
pallidum, caudate nucleus, amygdala, and insula [20],
[47], [48]. It is worth noting that the discriminative
capability of these brain regions in clinical analysis
has already been validated by previous studies [1],
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Fig. 8. Class discriminative maps generated by MP-GAN are shown as a colored overlay over MR images. The regions affected by progression of AD are
reliably captured by MP-GAN for four evaluation groups, respectively. (a) NC versus EMCI. (b) NC versus LMCI. (c) NC versus AD. (d) EMCI versus AD.

[49]–[51]. This implies the feasibility of the proposed
MP-GAN.

2) The morphological changes including global atrophy
(e.g., smaller volumes of hippocampus or amygdala) and
shape changes are visualized by class discriminative map
(indicated by color). These morphological changes are
related to AD disease progression and cognitive decline
severity.

3) For four evaluation groups, identified multiple regions
are overlapped or localized at similar brain regions.
For instance, the regions of NC versus LMCI and NC
versus AD are similar because LMCI might develop
to AD. Meanwhile, since the features between LMCI
and AD are very subtle, some visualized regions of NC
versus LMCI and NC versus AD are overlapped, but
the atrophy severity of each lesion is different (indicated
by color). The lesions visualized for EMCI versus AD
and NC versus AD also have some common regions,
such as the hippocampus and pallidum. Furthermore,
it is reasonable that the overlap regions between NC
versus EMCI and NC versus AD might not be identified
for EMCI versus AD, and some regions such as the
amygdala which are specific to EMCI versus AD can
be identified.

4) Along with the progression from EMCI to AD, from
Figs. 8(a)–(c), it can be observed that the intensity
values (i.e., light salmon color) in the heatmaps are
gradually increased (i.e., change to crimson) at various
brain locations, and some of them are accumulated at
the annotated regions.

These results suggest that the class discriminative maps gen-
erated by the proposed MP-GAN have the potential to provide
some extra information regarding AD progression, and it
may reveal the gradual atrophic process of human brain due
to cognitive decline. Furthermore, the severity of cognitive
decline is also reflected in ADNI diagnostic criteria for each
Alzheimer’s stage as described above. In summary, the above
observations imply the robustness of MP-GAN in visualizing
morphological features for different Alzheimer’s stages.

For further visualization analysis, five evaluation groups
are investigated, respectively, in Fig. 9. The results show

that the important brain regions visualized by the proposed
method are consistent with regions in Fig. 8. More specifically,
by aligning the automatic anatomical labeling (AAL) map with
the class discriminative maps visualized in Fig. 9, each region
in the class discriminative map will be matched to the specific
ROI index and name in AAL. The disease-related regions
visualized by MP-GAN are listed in Table II. Note that the
suffix “L” denotes the left brain, and the suffix “R” denotes
the right brain. The following observations can be made from
Fig. 9 and Table II: 1) the brain regions visualized by the
proposed method for NC versus SMC are precental gyrus,
middle frontal gyrus, inferior frontal gyrus, median cingulate,
paracingulate gyri, parahippocampal gyrus, superior occipital
gyrus, postcentral gyrus, and thalamus; 2) the brain regions
visualized by the proposed method for SMC versus EMCI are
rolandic operculum, insula, parahippocampal gyrus, amygdala,
superior occipital gyrus, middle occipital gyrus, postcentral
gyrus, superior parietal gyrus, and precuneus; 3) the brain
regions visualized by the proposed method for NC versus
EMCI are the middle frontal gyrus, posterior cingulate gyrus,
calcarine fissure and surrounding cortex, cuneus, superior
occipital gyrus, fusiform gyrus, postcentral gyrus, lenticular
nucleus, putamen, and inferior temporal gyrus; 4) the brain
regions visualized by the proposed method for EMCI versus
LMCI are the superior frontal gyrus, orbital part, inferior
frontal gyrus, opercular part, hippocampus, parahippocampal
gyrus, calcarine fissure and surrounding cortex, lingual gyrus,
inferior occipital gyrus, and fusiform gyrus; and 5) the brain
regions visualized by the proposed method for LMCI ver-
sus AD are the middle frontal gyrus, orbital part, inferior
frontal gyrus, triangular part, hippocampus, calcarine fissure
and surrounding cortex, lingual gyrus, middle occipital gyrus,
precuneus, lenticular nucleus, and putamen. These regions also
agree with the existing research findings. To sum up, the
lesions visualized by the proposed model are highly suggestive
and effective for tracking the progression of AD.

The performance of MP-GAN to visualize the subtle lesions
in the hippocampus is further investigated. The class discrimi-
native maps of the hippocampus in the sagittal view are visual-
ized in Fig. 10. Specifically, the following four neighborhood
evaluation groups are further explored: 1) NC versus SMC;
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Fig. 9. Distribution of class discriminative maps visualized by MP-GAN for five evaluation groups, respectively. (a) NC versus SMC. (b) SMC versus EMCI.
(c) NC versus EMCI. (d) EMCI versus LMCI. (e) LMCI versus AD.

TABLE II

INDICES AND NAMES OF REGIONS VISUALIZED BY MP-GAN USING AAL TEMPLATE

2) SMC versus EMCI; 3) EMCI versus LMCI; and 4) LMCI
versus AD. From Fig. 10, it can be observed that the zoomed
regions preserve more details in the hippocampus. In particu-
lar, in the earlier stages of AD such as: 1) NC versus SMC
and 2) SMC versus EMCI, the visualized lesions are extremely
subtle and scattered around the boundary of the hippocampus.
In the later stages of AD such as: 1) EMCI versus LMCI and
2) LMCI versus AD, the visualized lesions are accumu-
lated at the core region of the hippocampus. Furthermore,
Fig. 10(a)–(d) reflects the shape change and atrophy of the
hippocampus qualitatively as the progressive deterioration
from SMC to AD. It has already been validated by previous
studies [52] that the hippocampus is significant for identifying
biomarkers in clinical practice. Although the volume loss and

shape change of the hippocampus cannot be quantitatively
measured in this work, the visualized lesions of the hippocam-
pus are beneficial for identifying the biomarkers in future
work. Based on these visualized lesions in Fig. 10, the existing
biomarkers such as brain boundary shift integral (BBSI) [53],
scoring by nonlocal image patch estimator (SNIPE) [54], and
other grading biomarkers [55] can be computed. Furthermore,
new potential biomarkers reflecting the shape change and brain
atrophy might be discovered based on these visualized lesions
in the hippocampus in future work.

D. Quantitative Analysis

In this section, the following four metrics are computed to
assess visual quality.
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Fig. 10. Visualization results of hippocampus by MP-GAN in sagittal view
and corresponding zoomed regions. The subfigures at the bottom are the zoom
of the original subfigures for better observation. (a) NC vs. SMC. (b) SMC
vs. EMCI. (c) EMCI vs. LMCI. (d) LMCI vs. AD.

1) Normalized Cross Correlation (NCC): NCC [44] is cal-
culated between ground-truth maps and predicted class
discriminative maps. The higher the NCC, the more
correlation between ground truth maps and the predicted
class discriminative maps. For integrated gradients,
guided backprop, and CAM, the visualized heatmaps for
predicting positive class are used to calculate the NCC.

2) Peak Signal-to-Noise Ratio (PSNR): PSNR [56] is
also calculated between ground-truth maps and predicted
class discriminative maps on the test dataset. Similar to
NCC, the higher the PSNR, the closer the ground-truth
maps and the predicted class discriminative maps.

3) Structural Similarity Index Measure (SSIM) [57]: Dif-
ferent from NCC and PSNR, SSIM in each iteration
is calculated between synthetic images and real images
on the validation dataset. Higher SSIM indicates better
reconstructed MR image quality. By computing SSIM in
each iteration, the convergency of the model is further
validated.

4) Classification Metrics [4] Such as AUC, ACC, Sensitiv-
ity, and Specificity for Data Augmentation: Note that
the purpose of SSIM and classification metrics is to
demonstrate that the proposed MP-GAN can generate
images close to real distribution, and thus it validates
that MP-GAN can capture salient global features in class
discriminative maps.

For NCC and PSNR, the four existing methods are compared.
For SSIM, only GAN is compared since the other three
methods are based on classification. Similarly, for classifica-
tion metrics, only GAN is compared since the classification
performance is based on synthetic data augmentation by the
proposed MP-GAN and GAN.

The NCC results shown in Fig. 11 are mostly consistent with
the qualitative results shown from Figs. 4–7. The proposed
MP-GAN achieves significantly higher NCC than the other
four existing methods. It indicates that the distribution of class
discriminative maps generated by MP-GAN is the closest to
ground-truth maps. The three methods based on classification
(integrated gradients, guided backprop, and CAM) achieve a
low NCC score due to their exclusive focus on local features.
GAN performs better than three classification-based feature
visualization methods for NC versus SMC, NC versus LMCI,
and NC versus AD. This implies that the GAN architecture
can capture global features, which alleviates the limitations of
feature visualization methods based on classification. Above
all, the proposed MP-GAN achieves the highest correlation

Fig. 11. Box plots of NCC for different models.

Fig. 12. Box plots of PSNR for different models.

scores compared with the other four existing methods in all
the four evaluation groups.

From Fig. 12, it can be seen that the proposed MP-GAN
achieves the best PSNR compared with the other four existing
methods. This is also consistent with NCC results in Fig. 11
and the qualitative results shown from Figs. 4–7. The class
discriminative maps visualized by MP-GAN are closer to
ground truth. This is because MP-GAN benefits from the
multidirectional mapping mechanism and hybrid loss function.
Meanwhile, MP-GAN can be trained on MR images of all
the classes with only one model. In this manner, the common
features unrelated to the disease can be reused, and thus all the
salient global features can be captured in class discriminative
maps for different Alzheimer’s stages.

Furthermore, the generation diversity with SSIM is eval-
uated in each iteration on the validation dataset. The con-
vergence curves of the proposed MP-GAN and GAN are
given for four evaluation groups: 1) NC versus SMC; 2) NC
versus EMCI; 3) NC versus LMCI; and 4) NC versus AD,
respectively. From Figs. 13–16, it can be observed that the
proposed MP-GAN converges faster than GAN. Meanwhile,
MP-GAN performs stably in all four evaluation groups. On the
other hand, the training of GAN is extremely unstable for NC
versus LMCI, and it cannot converge for NC versus EMCI
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Fig. 13. Convergence curves for NC versus SMC.

Fig. 14. Convergence curves for NC versus EMCI.

and NC versus AD. Again, these results are consistent with
the NCC score in Fig. 11. The NCC score of GAN is low for
NC versus EMCI in Fig. 11, because GAN cannot converge
for NC versus EMCI as shown in Fig. 14. These results also
indicate that the proposed MP-GAN can generate diverse MR
images close to real distribution.

The objective of synthetic data augmentation is to demon-
strate the learned class discriminative map have captured all
the subtle morphological features for different stages of AD.
If the classification performance is improved, this indicates
that the learned class discriminative maps have captured all
the subtle morphological features for different stages of AD
progression. Thus, the synthetic MR images produced by class
discriminative maps can be classified as the corresponding
class correctly. By conducting this experiment, the efficacy
of MP-GAN is corroborated. More specifically, the CNN
classifier is trained using synthetic data augmentation. More
specifically, the 100 synthesized MR images of each class by
MP-GAN and GAN are added to the original training set to
form two new augmented training sets separately. Then the
CNN model is trained on the two new augmented training sets
separately for each evaluation group. During the test stage, the
same test set of real MR images is used. From Figs. 17–20,
it can be seen that adding synthesized samples by the proposed

Fig. 15. Convergence curves for NC versus LMCI.

Fig. 16. Convergence curves for NC versus AD.

Fig. 17. Classification results of synthetic data augmentation for NC versus
SMC.

MP-GAN achieves better classification performance in terms
of AUC, accuracy, specificity, and sensitivity. Overall, the syn-
thetic data samples generated by MP-GAN can add additional
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Fig. 18. Classification results of synthetic data augmentation for NC versus
EMCI.

Fig. 19. Classification results of synthetic data augmentation for NC versus
LMCI.

variability to the original training set, which in turn leads
to better performance. This implies that the synthesized MR
images generated by MP-GAN not only provide meaningful
visualizations but also capture discriminative features for AD
analysis. The proposed MP-GAN can be used as an effective
data augmentation method.

V. DISCUSSION

Although extensive experiments demonstrate the superiority
of the proposed MP-GAN, MP-GAN has two limitations.

1) The hyperparameters are tuned empirically for the best
performance. The optimal value of the hyperparameters
depends on network architecture and data. There is no
straightforward way to find optimal hyperparameters in
advance.

2) The conventional GAN has several common failure
modes, such as training instability and mode collapse.
The proposed MP-GAN is designed as a three-player
cooperative game instead of the conventional two-player

Fig. 20. Classification results of synthetic data augmentation for NC
versus AD.

competition game by introducing the auxiliary classifier
network based on the generator and the discriminator.

The specific architecture design and the proposed hybrid loss
can make the training process more stable. However, mode
collapse, which is a common issue of the GAN model, still
might happen even when MP-GAN has shown stable training
performance. In future works, how to solve the mode collapse
issue is the direction to further improve the robustness of the
proposed MP-GAN.

VI. CONCLUSION

In this article, a novel MP-GAN is proposed to visualize
the morphological features indicating the severity of AD in
whole-brain MR images. By introducing a novel multidirec-
tional mapping mechanism into the model, MP-GAN can
capture the salient global features efficiently. Thus, using the
class-discriminative map from the generator, the proposed
model can clearly delineate the subtle lesions via MR image
transformations between the source domain and the target
domain. Besides, by integrating the adversarial loss, classi-
fication loss, cycle consistency loss, and L1 penalty, a sin-
gle generator in MP-GAN can learn the class-discriminative
maps for multiple classes. The experimental results on the
public ADNI dataset have demonstrated that MP-GAN can
visualize multiple lesions affected by the progression of AD
accurately. Furthermore, MP-GAN may visualize some new
disease-related regions that have not been investigated yet.
This can be studied further to discover potential new AD
biomarkers in future work.
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